
CHANGE IN SHOCK-WAVE PRESSURE IMPULSE WITH DISTANCE NEAR THE SOURCE 

Yu. V. Petukhov UDC 532.593 

One of the quantities that characterizes the destructive action of an explosive source 
is the shock-wave pressure impulse Is, which is defined as the integral over time of the pres- 
sure disturbance in the compression phase of the explosion wave [I]. Change in shock-wave 
impulse affects the behavior of the low frequency portion of the spectrum, which is also of 
importance [2]. Analysis of experimental data [I-6] has shown that near the charge the im- 
pulse Is(r) falls off with distance r more slowly than follows from conventional geometric 
divergence [7]. Moreover, numerical calculations [8], which have been confirmed experimen- 
tally [6], have shown that the initial abrupt falloff of impulse with distance is replaced by 
an increase in Is(r) for a certain r range, after which further slow reduction of impulse 
occurs, tending only asymptotically to a law I s ~ I/r. The existence of a relative maximum 
in the function Is(r) and its slow falloff as compared to I/r were explained in [6] as due 
to transfer of impulse to the medium by detonation products which liberate shock wave energy 
over some time interval. In [3] the slow decay of Is(r) was explained by nonlinear effects 
on the shock wave front, i.e., the existence and evolution of a shock front. In [3] the peak 
approximation of Kirkwood--Beatty theory was used, which does not consider correct pressure 
distribution in the tail portion of the shock wave. Moreover, in calculating Is(r) the non- 
linear transformation of shock-wave profile was not considered (quasiexponential approxima- 
tion). However, as was shown in [9], correct calculation of nonlinear effects in the Kirk- 
wood--Beatty approximation leads to a dependence Is(r) ~ I/r, which does not agree with the 
experimental data of [I-6]. 

This lack of clarity in interpreting the slow decay of shock wave pressure impulse with 
distance as compared to the function Is(r) % I/r has stimulated the present study, the goal 
of which is to clarify the influence of nonlinear effects on the shock-wave front and flow of 
the medium upon the function Is(r). 

I. We will consider the spherically symmetric motion of a continuous medium: 

I 2 ~ 
vt + vvr + -~- Pr = O, ~t + (pv)r + -7- (pv) O, ( 1.1 ) 

where v i s  v e l o c i t y ;  p ,  p r e s s u r e ;  p,  d e n s i t y .  Combining t h e  e q u a t i o n s  o f  ( 1 . 1 ) ,  we o b t a i n  
a relationship expressing the conserVation of impulse: 

pr = - -  {pv)t + (pv~)r + -7- (PV2) �9 

We will introduce the following notation: Tl(r), time of arrival of the shock front at a point 
at distance r; T2(r), time of arrival of that portion of the wave where the pressure perturba- 
tion p' in the wave is equal to zero p'(T2) = 0; at t > T2 the pressure perturbation changes 
to the opposite sign, corresponding to the rarefaction phase. In the future, the subscript 
I placed on hydrodynamic parameters will indicate their values on the shock front, while 2 
will indicate values at t = T2(r). Integrating Eq. (I .2) over the time interval TI ~< t <~ T2 
at constant r, we obtain: 

dis . I d E s  2 " " , ,  

T2 T~. 
where Is = ~ p'dt i s  t he  p r e s s u r e  i m p u l s e ;  E~ = .1 Pv~'dt i s  t h e  dynamic i m p u l s e .  

Ti T1 

If we consider the Rankin--Hugoniot relationship on the shock front [10], it is simple 
to prove that the identity 
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d T  1 . , 

p,va --- -dT-(p , + p,v~)--~ 0 (1 .4) 

is satisfied. It is evident from Eqs. (1.3), (I .4) that the shock-wave pressure impulse is 
dependent not only on the values of the dynamic impulse, but also on the values of the hydro- 
dynamic quantities on the boundary between the compression and rarefaction phases at t = 
T2(r), the position of which in time for a given r is defined by the flow behind the shock- 
wave front : 

d-7 = - - t 7 7  § @ E +  - -  p~v2 - - ~ - p ~ v ~  : ( 1 . 5 )  

In  o r d e r  t o  d e t e r m i n e  which of  t he  two te rms  in  Eq. (1 .5) i s  t h e  dominant  one in c o n t r o l l i n g  
t he  b e h a v i o r  of  I s ( r ) ,  we w i l l  p e r f o r m  f u r t h e r  s i m p l i f i c a t i o n s .  S ince  e m p i r i c a l  laws d e -  
s c r i b e  the  b e h a v i o r  of  shock-wave  p a r a m e t e r s  we l l  in  the  d i s t a n c e  r ange  r /> r0 ~ 10R0, where 
t he  r a t i o s  p [ n / p 0 c 0  2 and v l / c 0  a r e  s u f f i c i e n t l y  sma l l  compared to  u n i t y  ( s e e ,  f o r  example ,  
[ 3 ] ) ,  in  t r a n s f o r m a t i o n s  of  Eq. ( 1 . 5 )  we w i l l  c o n s i d e r  o n l y  q u a d r a t i c a l l y  n o n l i n e a r  t e r m s .  
Here P0 i s  t h e  e q u i l i b r i u m  d e n s i t y  o f  the  medium; c0 ,  speed  of  sound;  n ,  a d i a b a t i c  i n d e x ;  R0, 
r a d i u s  of  s o u r c e .  

In  the  l i n e a r  a p p r o x i m a t i o n ,  f rom Eq. 1 .1)  and the  Rankin--Hugoniot  r e l a t i o n s h i p s  on the  
shock  f r o n t  we have  t he  s i m p l e  dependence  

v = p'/poCo + ~ p '  ( t )dt /po r. 1.6) 
T i 

Using Eq. (1.6), for Es we obtain 

~'2 , t r2 F ~ I z ' 

T 1 LT1 P~ 

With consideration of Eq. (1.6) the second term in Eq. (1.5) reduces to the form 

P2V2 --  -~r P2V 2 "~" T I - -  PoCorJ 

s i n c e  dT2 /d r  ~ 1 / c0 .  From Eqs.  ( 1 . 5 ) ,  ( 1 . 7 ) ,  ( 1 . 8 )  we f i n a l l y  o b t a i n  an e q u a t i o n  f o r  I s 

77 + -7  t + p0c-- ~ a-71 = --/-~?- + -7  E , ,  

where E]=@2j(/)~dt. If we integrate over time between limits Tl~t <~ 

oo 

an equation for the total pressure impulse of the explosive wave f= j'p'dt: 
T i 

d - F + - -  + 2 - a 7  = - -  --a-7 + P0C0 r r j 

1 . 7 )  

1 .8)  

I ,9) 

, we can obtain 

1 .1o)  

where 
oo 

I y 
-E = P~176 ~ ~]: 

2. We will first consider Eq. (I.9) for shock-wave impulse in water. Energy disslpa- 
tion on the shock front causes the quantity E~----E's(r0)~ -(2+• to fall more rapidly ( • "> 0) than 
in a linear wave, where ~ = 0; ~ = r/r0. In solving Eq. (1.9) we can use a theoretical de- ! 
dependence for E s [11, 12] which agrees well with experimental data, however it is more con- 
venient to use an empirical law for E~ [2, 3, 5], where ~ = 0.08-0.12. 

We will introduce the dimensionless quantity S = Is(r)~/Is(r0) , characterizing the de- 
viation of the law Is(r) from spherical, for which S - I. Equation (I .9) for S is written in 
the form 

'. ( 2 .1 )  
= ~" + I~s 
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Here the parameters ~ = ~E:(ro)/~(ro) and B = 2Is(r0)/p0c0r0, dependent on r0, are defined from 
empirical laws forE~and Is, referenced toa TNT charge of mass Q (kg) and density p, = 1.6.103 
kg/m 3 [3, 5]: 

~ O&t4(~ /O*/8 ) -  1.~8, ~ = O.049(ro/Q~3)_ ,.ol. 

It is simple to obtain a solution from Eq. (2.1) corresponding to the limiting condition ~ = 
1, S = 1: 

From Eq. (2.2) at significant distances from the explosion point ~ ~ I we find that the values 
of S increase and tend to a definite constant value: 

(1 ~-(l+u)), (2 3) S ~ I  + ~ + t-T-~ -- 

which agrees with the experimental data of [5], where the law of change of shock-wave impulse 
in water is represented by an expression of the following form: 

R = ~ A - 1 / 2 r 0 / R 0  i s  t h e  r e d u c e d  d i s t a n c e ,  0 . 6  ~ A ~ 4 . 5 .  F i g u r e  1 s h o w s :  1, t h e o r e t i c a l  [Eq .  
( 2 . 2 ) ]  a n d  2 ,  e x p e r i m e n t a l  [5 ]  c u r v e s  o f  S a s  a f u n c t i o n  o f  r e d u c e d  d i s t a n c e  R; a ,  A = 0 . 6 ;  
b ,  A = 4 . 6 .  The d a s h e d  l i n e s  i n d i c a t e  t h e  p o s s i b l e  b e h a v i o r  o f  a t h e o r e t i c a l  d e p e n d e n c e  w h i c h  
w o u l d  c o r r e s p o n d  t o  s m o o t h  c h a n g e  o f  S n e a r  R = 100.  

I t  s h o u l d  b e  n o t e d  t h a t  i n  Eq.  ( 2 . 3 )  t h e  t e r m  p r o p o r t i o n a l  t o  ~ c o n s i d e r s  t h e  c o n t r i b u -  
t i o n  o f  l i q u i d  f l o w  t o  s h o c k - w a v e  i m p u l s e ,  s i n c e  i t s  a p p e a r a n c e  i s  due  t o  c o n s i d e r a t i o n  o f  
t h e  s e c o n d  t e r m  on t h e  r i g h t  s i d e  o f  Eq .  ( 1 . 6 ) ,  w h i c h  d o e s  n o t  d i s a p p e a r  a s  co + ~ .  The t e r m  
p r o p o r t i o n a l  t o  ~ c o n s i d e r s  n o n l i n e a r  e n e r g y  d i s s i p a t i o n  e f f e c t s  i n  t h e  s h o c k  f r o n t ,  S i n c e  i n  
a l i n e a r  wave  • = 0 a n d  a = 0 t  S i n c e  f o r  r 0 / Q  z/a.  ~ 0 . 5 2  < 1 t h e  r a t i o  o f  t h e  s e c o n d  t e r m  o f  
Eq. (2.3) to the first term ~(I + • = 21(ro/Ova)-~ is significantly greater than unity, it 
can be assumed that the increase in S is caused mainly by the existence of liquid flow behind 
the shock-wave fronts. Beginning at a distance r0 > 2.7Q I/3, where ~(I ~ • the in- 
crease in S is caused by nonlinear energy dissipation effects in the shock front. However, 
at such distance the increment in S is 2-3 orders of magnitude smaller than unity, therefore 
the change in S does not exceed tenths of a percent, i.e., will be practically indetectable. 
Consequently, the slow falloff of shock-wave pressure impulse (increase in S) with distance 
can be explained by the effect of liquid motion on the flow behind the shock-wave front. 

3. We will now consider Eq. (1.10) for total pressure impulse of an explosive wave, 
which with the substitution W = I(r)/I(r0) reduces to the form 

dW 1= 2~ 2 (3 .  I ) 
�9 = i + ~xw/~ ' 

w h e r e  a l  ---- uE(ro ) / I (%) ,  ~,  = 2I(ro)/poCoro . I f  we n e g l e c t  t h e  t e r m  p r o p o r t i o n a l  t o  ~ l ,  t h e n  a s o l u -  
t i o n  o f  Eq.  ( 3 . 1 )  s a t i s f y i n g  t h e  b o u n d a r y  c o n d i t i o n s  W = 1 a t  5 = 1 c a n  b e  o b t a i n e d  i n  t h e  
form 

-~ Pl+l 
w h e n c e  i t  f o l l o w s  t h a t  t h e  f l o w  o f  t h e  medium l e a d s  t o  r e d u c t i o n  i n  t o t a l  e x p o s i o n  wave  p r e s -  

since at BI > 0 for ~ - ~ o o W - + ( 2 ~ x - -  q - l ) - l / a < l  . -  Since it follows from Eq.  ( 1 . 6 )  sure impulse, 

that as t § co the total impulse vanishes, i.e., I(r0) ~ O, then, neglecting the terms in Eq. 
(3.1) proportional to B1 (BI < ~i), we obtain the simple solution: 

W = ~  . ( 3 . 2 )  
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As follows from Eq. (3.2), nonlinear energy dissipation effects on the shock front lead to 

an increase in total explosion wave pressure impulse. 

In conclusion, we note that the slow falloff of shock-wave pressure impulse with dis- 
tance, as compared to geometric divergence, which occurs upon detonation of a spherical charge 
in liquid has also been observed for an explosion in air (5). Since such behavior of the im- 
pulse is caused by the existence of a flow of the medium behind the shock front, it is evi- 
dent that with increase in mass of the detonation products and with increase in their expan- 
sion rate the effect of retarded falloff of shock-wave pressure impulse will appear more 

markedly. 
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